nsdf Documentation
Release 0.1

Subhasis Ray

November 04, 2014

Contents

1.1 nsdfPackage

2.1 constantsModule,

3.1 nsdfdataModule,

41 modelModule.

5.1 nsdfwriterModule.

6.1 nsdfreaderModule.

7.1 utilModule

1 NSDF Package

2 Constants

3 Data containers

4 Data structure for model hierarchy
5 NSDF file writer

6 NSDF file reader

7 Utilities

8 Indices and tables

Python Module Index

13

.................... 13

15

.................... 15

23

.................... 23

27

.................... 27

29

31

nsdf Documentation, Release 0.1

Contents:

Contents 1

nsdf Documentation, Release 0.1

2 Contents

CHAPTER 1

NSDF Package

1.1 nsdf Package

1.1.1 NSDF

NSDF (Neuroscience Simulation Data Format) is a file format built on top of HDF5.

Although the design and development started with the aim of storing data generated from simulations in computational
neuroscience, this format is generic enough that any time series data should fit in. Thus the actual application can be
much broader than simulations in neuroscience.

There are three top level groups in an NSDF file: model, data and map for storing information about the model
(computational model of a neuron, the human brain, model of the world, etc.), data collected from model components
and the mapping between the data and its source (model component) respectively.

Data

NSDF stores the data collected from a model under the /data group. Data is organized into four subgroups:

uniform: Time series data that has been sampled with a uniform sampling interval. This is the case for simula-
tions that use fixed time step for integration. In this case the sampling interval df and the start time is enough to
determine the sampling time of any data point unambiguously.

nonuniform: Time series data that has been sampled with irregular sampling interval. In this case sampling time
for each data point must be explicitly stored. This is the case for simulations using variable time step inetgration
methods, like cvode.

There can be several scenarios under nonuniform sampling.

1. simultaneous sampling: Although the sampling intervals are different, all data sources are sampled si-
multaneously. Thus the length of data from each source is same and data points with the same index
have the same sampling time. In this case, data from an entire population of data sources can be put
together in a homogeneous 2D dataset and the share the sampling times.

This is the case when the CVODE solver is global for a simulation.
This is represented by the dialect nsdf.dialect. NUREGULAR.

2. independent sampling: In a more general case, the data should be sampled more densely when the
variable is changing fast and sparsely when the rate of change is slow. If the data sources are in-
dependent of each other, they may be sampled at different time points. Thus data recorded for a fixed
duration will of different length for different sources.

http://www.hdfgroup.org/

nsdf Documentation, Release 0.1

In this case data from a population of sources can be stored as:
(a) individual 1D datasets under a common group.
nsdf.dialect. ONED represents this case

(b) 2D vlen(variable length) dataset which represents a ragged array with each row having a different
number of columns.

This is represented by nsdf.dialect. VLEN
(c) 2D dataset with NaN padding such that all rows have same number of columns.
This is represented by nsdf.dialect. NANPADDED.

event: Data points represent event times. Spike time data is the most common example in neuroscience. Similar
to nonunform data, event times data from different sources are of different length. Thus they, too, can be stored
in three different ways.

1. individual 1D datasets under a common group.
nsdf.dialect. ONED represents this case

2. 2D vlen(variable length) dataset which represents a ragged array with each row having a different number
of columns.

This is represented by nsdf.dialect. VLEN.
3. 2D dataset with NaN padding such that all rows have same number of columns.
This is represented by nsdf.dialect. NANPADDED.

static: In addition to time series or temporal data, components in a model can have static data associated with
them. These are stored under the szatic group.

Model

The model group stores information about the model of the system from which data has been collected. This is rela-
tively free form since different fields use different ways of describing the model. Within computational neuroscience
there are multiple standards for model description. NSDF specification provides some containers for storing model
description and one hierarchical structure that can be immediately useful for data analysis and visualization tools in
neuroscience.

filecontents: This group can have a hierarchical structure underneath mapping the directory tree used for the
model. Complex models are often organized in a directory tree and this maps nicely to the hieararchical struc-
ture in HDFS5, where Groups can represent directories and Datasets can represent files. The contents of the files
can be stored as strings or binary objects in the Datasets.

filerefs: This group can store datasets containing the paths of external model files. The disadvantage being that
the model has to be distributed separately from the data.

links: This group can store links to external model definitions in other HDF5 files.

modeltree: This group stores a tree structure representing hierarchical models. NSDF provides mechanisms for
efficient linking between the model components represented by the nodes of this tree with the data.

Each node in this tree is a Group with a uid attribute storing the unique identifier of the model component. There
can be other attributes added by the user. One special attribute is ontology meant for storing the ontological term
for this component.

4 Chapter 1. NSDF Package

nsdf Documentation, Release 0.1

Map

Mapping between data and its source is stored under the /map group. Like /data, it has the subgroups uniform,
nonuniform, event and static which store the mapping between the datasets under corresponding subgroups of /data
and the model components.

For all datasets except event and nonuniform data stored in 1D datasets, the uid of a population of sources are stored
as a dataset under the corresponding group and linked to the datasets recorded from these as a HDF5 DimensionScale
(DS). Multiple variables recorded from the same source population share this dimension scale. The rows in the
population DS have one to one correspondence with the rows in the datasets.

For 1D datasets, a 2 column dataset is created for each population for each recorded variable. The first column is
source and stores the uid of the source component and the second column is data which stores the reference to the 1D
dataset collected from this source.

Note on namespace

The nsdf package is organized into constants Module, nsdfdata Module, model Module, nsdfwriter Module and util
Module submodules. However all their contents are directly accessible under the nsdf namespace. Thus, instead of
nsdf.nsdfwriter NSDF Writer you should use nsdf.NSDFWriter.

1.1. nsdf Package 5

nsdf Documentation, Release 0.1

6 Chapter 1. NSDF Package

CHAPTER 2

Constants

2.1 constants Module

class nsdf.constants.dialect
Bases: object

Enumeration of different dialects of NSDF.
The following constants are defined:
VLEN: nonuniform and event data stored in vlen 2d datasets.
ONED: nonuniform and event data stored in 1d datasets.
NANPADDED: nonuniform and event data stored in regular 2d datasets with NaN padding.

NUREGULAR: nonuniform datasets have shared sampling times. Thus nonuniform data goes into
regular 2D datasets. In this case the events are stored in 1D datasets.

nsdf Documentation, Release 0.1

8 Chapter 2. Constants

CHAPTER 3

Data containers

3.1 nsdfdata Module

Classes for NSDF data.

class nsdf .nsdfdata.EventData (*args, **kwargs)
Bases: nsdf.nsdfdata.NSDFData

Stores event times recorded from data sources.

class nsdf .nsdfdata.NSDFData (name, unit=None, field=None, dtype=<Mock object at

0x7f78cb076790>)
Bases: object

Base class for NSDF Data.

name
Str

name of the dataset.

unit
Str

unit of the recorded quantity.

field
str

the recorded field/parameter of the source object. If unspecified it defaults to name.

dtype
numpy.dtype
type of the recorded data. Default: numpy.float64

get_all_data()
Return the data for all the sources as a list.

get_data (source)
Return the data for specified source

get_source_data_dict ()
Return a dictionary storing the mapping from source->data.

get_sources ()
Return the source ids as a list

nsdf Documentation, Release 0.1

put_data (source, data)
Set the data array for source.

Parameters

¢ source (str) — uid of the data source.

 data (a scalar or sequence of elements of dtype) — the data for this source.
Returns None

update_source_data_dict (src_data)
Insert a bunch of source, data pairs.

Parameters src_data (dict-like) — an object that is a dict or a

Returns None

Examples

>>> data_obj = nsdf.UniformData (’current’, unit='pA’)

>>> ika, ikdr = [0.1, 0.3, 0.5], [0.3, 0.14]

>>> data_obj.update_source_data_dict ([("KA’, ika), ("KDR’, ikdr)])

class nsdf .nsdfdata.NonuniformData (name, unit=None, field=None, tunit=None, dtype=<Mock
object at Ox7f78cb0768d0>, ttype=<Mock object at

0x7f78cb076950>)
Bases: nsdf.nsdfdata.TimeSeriesData

Stores nonuniformly sampled data.

ttype
np.dtype data type of time points. Default np.float64

put_data (source, data)
Set the data array for source.

Parameters

¢ source (str) — uid of the data source.

¢ data (a 2-tuple) — the data and sampling times for this source.
Returns None

class nsdf .nsdfdata.NonuniformRegularData (*args, **kwargs)
Bases: nsdf .nsdfdata.TimeSeriesData

Stores nonuniformly sampled data where all sources are sampled at the same time points.

get_times ()
Returns the sampling times for the entire dataset.

put_data (source, data)
Set the data array for source.

Parameters

¢ source (str) — uid of the data source.

* data (a scalar or sequence of elements of dtype) — the data for this source.
Returns None

Raises

10 Chapter 3. Data containers

nsdf Documentation, Release 0.1

* ValueError if length of data does not match that of —
* sampling times. —

set_times (times, tunit=None)
Set the sampling times of all the data points.

class nsdf .nsdfdata.StaticData (*args, **kwargs)
Bases: nsdf .nsdfdata.NSDFData

Stores static data recorded from data sources.

class nsdf .nsdfdata.UniformData (*args, **kwargs)
Bases: nsdf.nsdfdata.TimeSeriesData

Stores uniformly sampled data.

dt
float

the sampling interval of the data.

tunit

float

unit of time.

set_dt (value, unit)
Set the timestep used for data recording.

3.1. nsdfdata Module

11

nsdf Documentation, Release 0.1

12 Chapter 3. Data containers

CHAPTER 4

Data structure for model hierarchy

4.1 model Module

Classes for representing the model.

class nsdf .model .ModelComponent (name, uid=None, parent=None, attrs=None, hdfgroup=None)

Bases: object
Tree node for model tree.

parent
ModelComponent

parent of this component.

children
dict

dict of child components - name is key and ModelComponent is value.

attrs
dict

attributes of the component. These become HDFS attributes when it is written to file.

hdfgroup
hdf5 Group

the group that this component corresponds to in NSDF file.

add_child (child)
Add a child component under this model component.

Parameters child (ModelComponent) — child component to add to this component
Returns None
Raises TypeError —

add_children (children)
Add a list of children to current component.

Parameters children (/ist) — list of children to be added.
Returns None

Raises TypeError —

13

nsdf Documentation, Release 0.1

check_uid (uid_dict)
Check that uid are indeed unique.

Parameters uid_dict (dict) — an empty dict for storing the uids

Note: If any uid is not set, this function as a side effect creates the uids in the form parentuid/name -
similar to unix file paths.

get_id path_dict ()
Return a dictionary mapping the unique id of the model components to their path in modeltree.

See also:
update_id_path_dict

get_node (path)
Get node at path relative to this node.

Parameters path (str) — path obtained by concatenating component names with / as separator.
Returns ModelComponent at the specified path
Raises KeyError if there is no element at the specified path. —

path
Path of this component

print_tree (indent=")
Recursively print subtree rooted at this component.

Parameters indent (str) — indentation.
Returns None

update_id_path_dict ()
Update the id->path mapping.

This must be called before using get_id_path_dict whenever the model tree is been modified
See also:
get_id_path_dict

visit (function, *args, **kwargs)
Visit the subtree starting with node recursively, applying function fi to each node.

Parameters

* node (ModelComponent) —node to start with.

* fn (node, *args, **kwargs) — a function to apply on each node.
Returns None

nsdf .model .common_prefix (paths, sep="/")
Find the common prefix of paths.

Note: does not check for malformed paths right now.

14 Chapter 4. Data structure for model hierarchy

CHAPTER 5

NSDF file writer

5.1 nsdfwriter Module

Writer for NSDF file format.

class nsdf .nsdfwriter .NSDFWriter (filename, dialect="ONED’, mode="a’, **h5args)
Bases: object

Writer for NSDF files.
An NSDF file has three main groups: /model, /data and /map.

mode
Str

File open mode. Defaults to append (‘a’). Can be ‘w’ or ‘w+’ also.

dialect
nsdf.dialect member

ONED for storing nonuniformly sampled and event data in 1D arrays.
VLEN for storing such data in 2D VLEN datasets.
NANPADDED for storing such data in 2D homogeneous datasets with NaN padding.

model
h5.Group

/model group

data
h5.Group

/data group

mapping
h5.Group

/map group

time dim
h5.Group

/map/time group contains the sampling time points as dimension scales of data. It is mainly used for
nonuniformly sampled data.

15

nsdf Documentation, Release 0.1

modeltree
(h5.Group): ‘/model/modeltree group can be used for storing the model in a hierarchical manner. Each
subgroup under modeltree is a model component and can contain other subgroups representing subcompo-
nents. Each group stores the unique identifier of the model component it represents in the string attribute
uid.

add_event_1d (source_ds, data_object, source_name_dict=None, fixed=False)
Add event time data when data from each source is in a separate 1D dataset.

For a population of sources called {population}, a group /map/event/{population} must be first created
(using add_event_ds). This is passed as source_ds argument.

When adding the data, the uid of the sources and the names for the corresponding datasets must
be specified in source_name_dict and this function will create one dataset for each source under
/data/event/{population}/{name} where {name} is the name of the data_object, preferably the field name.

Parameters

e source_ds (HDF5 Dataset) — the dataset /map/event/{populationname}{variablename}
created for this population of sources (created by add_event_ds_1d). The name of this
group reflects that of the group under /data/event which stores the datasets.

 data_object (nsdf.EventData) — NSDFData object storing the data for all sources in
source_ds.

* source_name_dict (dict) — mapping from source id to dataset name. If None (default) it
tries to use the uids in the source_ds. If the uids do not fit the hdf5 naming convention, the
index of the entries in source_ds will be used.

« fixed (bool) — if True, the data cannot grow. Default: False
Returns dict mapping source ids to datasets.

add_event_ds (name, idlist)
Create a group under /map/event with name name to store mapping between the datasources and event
data.

Parameters

* name (str) — name with which the datasource list should be stored. This will represent a
population of data sources.

« idlist (/ist) — unique ids of the data sources.
Returns The HDF5 Group /map/event/{name).

add_event_ds_1d (popname, varname, idlist)
Create a group under /map/event with name name to store mapping between the datasources and event
data.

Parameters

e popname (str) — name of the group under which the datasource list should be stored. This
will represent a population of data sources.

* varname (str) — name of the dataset mapping source uid to data. This should be same as
the name of the recorded variable.

Returns The HDFS Dataset /map/event/{ popname}/{varname].

add_event_nan (source_ds, data_object, fixed=False)
Add event data when data from all sources in a population is stored in a 2D array with NaN padding.

Parameters

16 Chapter 5. NSDF file writer

nsdf Documentation, Release 0.1

* source_ds (HDF5 Dataset) — the dataset under /map/event created for this population of
sources (created by add_nonunifrom_ds).

 data_object (nsdf.EventData) — NSDFData object storing the data for all sources in
source_ds.

* fixed (bool) — if True, this is a one-time write and the data cannot grow. Default: False
Returns HDFS5 Dataset containing the data.

add_event_vlen (source_ds, data_object, fixed=False)
Add event data when data from all sources in a population is stored in a 2D ragged array.

When adding the data, the uid of the sources and the names for the corresponding datasets must be specified
and this function will create the dataset /data/event/{population}/{name} where {name} is name of the
data_object, preferably the name of the field being recorded.

Parameters

* source_ds (HDF5 Dataset) — the dataset under /map/event created for this population of
sources (created by add_nonunifrom_ds).

¢ data_object (nsdf.EventData) — NSDFData object storing the data for all sources in
source_ds.

* fixed (bool) — if True, this is a one-time write and the data cannot grow. Default: False

Returns HDFS5 Dataset containing the data.

Notes

Concatenating old data with new data and reassigning is a poor choice for saving data incrementally. HDF5
does not seem to support appending data to VLEN datasets.

h5py does not support vlen datasets with float64 elements. Change dtype to np.float64 once that is devel-
oped.

add_model_filecontents (filenames, ascii=True, recursive=True)
Add the files and directories listed in filenames to /model/filecontents.

This function is for storing the contents of model files in the NSDF file. In case of external formats like
NeuroML, NineML, SBML and NEURON/GENESIS scripts, this function is useful. Each directory is
stored as a group and each file is stored as a dataset.

Parameters

* filenames (sequence) — the paths of files and/or directories which contain model informa-
tion.

e ascii (bool) — whether the files are in ascii.
* recursive (bool) — whether to recursively store subdirectories.

add_modeltree (root, target="/")
Add an entire model tree. This will cause the modeltree rooted at root to be written to the NSDF file.

Parameters
* root (ModelComponent) — root of the source tree.

* target (str) — target node path in NSDF file with respect to ‘/model/modeltree’. root and
its children are added under this group.

5.1.

nsdfwriter Module 17

nsdf Documentation, Release 0.1

add_nonuniform_1d (source_ds, data_object, source_name_dict=None, fixed=False)
Add nonuniform data when data from each source is in a separate 1D dataset.

For a population of sources called {population}, a group /map/nonuniform/{population} must be first cre-
ated (using add_nonuniform_ds). This is passed as source_ds argument.

When adding the data, the uid of the sources and the names for the corresponding datasets must be specified
and this function will create one dataset for each source under /data/nonuniform/{population}/{name}
where {name} is the name of the data_object, preferably the name of the field being recorded.

This function can be used when different sources in a population are sampled at different time points for
a field value. Such case may arise when each member of the population is simulated using a variable
timestep method like CVODE and this timestep is not global.

Parameters

 source_ds (HDF5 dataset) — the dataset /map/nonuniform/{population}/{variable} created
for this population of sources (created by add_nonunifrom_ds_1d).

* data_object (nsdf.NonuniformData) — NSDFData object storing the data for all sources in
source_ds.

 source_name_dict (dict) — mapping from source id to dataset name. If None (default),
the uids of the sources will be used as dataset names. If the uids are not compatible with
HDFS5 names (contain ‘.’ or ‘/’), then the index of the source in source_ds will be used.

* fixed (bool) — if True, the data cannot grow. Default: False
Returns dict mapping source ids to the tuple (dataset, time).
Raises AssertionError when dialect is not ONED. —

add_nonuniform_ds (popname, idlist)
Add the sources listed in idlist under /map/nonuniform/{popname}.

Parameters

¢ popname (str) — name with which the datasource list should be stored. This will represent
a population of data sources.

e idlist (list of str) — list of unique identifiers of the data sources. This becomes irrelevant if
homogeneous=False.

Returns An HDFS Dataset storing the source ids when dialect is VLEN or NANPADDED. This
is converted into a dimension scale when actual data is added.

Raises AssertionError if idlist is empty or dialect is ONED. —

add_nonuniform_ds_1d (popname, varname, idlist)
Add the sources listed in idlist under /map/nonuniform/{popname}/{varname}.

In case of 1D datasets, for each variable we store the mapping from source id to dataset ref in a two column
compund dataset with dtype=[(‘source’, VLENSTR), (‘data’, REFTYPE)]

Parameters

* popname (str) — name with which the datasource list should be stored. This will represent
a population of data sources.

* varname (str) — name of the variable beind recorded. The same name should be passed
when actual data is being added.

« idlist (/ist of str) — list of unique identifiers of the data sources.

Returns An HDF5 Dataset storing the source ids in source column.

18 Chapter 5. NSDF file writer

nsdf Documentation, Release 0.1

Raises AssertionError if idlist is empty or if dialect is not ONED. —

add_nonuniform_nan (source_ds, data_object, fixed=False)
Add nonuniform data when data from all sources in a population is stored in a 2D array with NaN padding.

Parameters

* source_ds (HDF5 Dataset) — the dataset under /map/event created for this population of
sources (created by add_nonunifrom_ds).

 data_object (nsdf.EventData) — NSDFData object storing the data for all sources in
source_ds.

* fixed (bool) — if True, this is a one-time write and the data cannot grow. Default: False

Returns HDFS5 Dataset containing the data.

Notes

Concatenating old data with new data and reassigning is a poor choice for saving data incrementally. HDF5
does not seem to support appending data to VLEN datasets.

h5py does not support vlen datasets with float64 elements. Change dtype to np.float64 once that is devel-
oped.

add_nonuniform_regular (source_ds, data_object, fixed=False)
Append nonuniformly sampled variable values from sources to data. In this case sampling times of all the
sources are same and the data is stored in a 2D dataset.

Parameters

* source_ds — the dataset storing the source ids under map. This is attached to the stored
data as a dimension scale called source on the row dimension.

* fixed (bool) — if True, the data cannot grow. Default: False
Returns HDFS5 dataset storing the data
Raises

¢ KeyError if the sources in ‘data_object‘ do not match —

¢ those in ‘source_ds¢. —

* ValueError if the data arrays are not all equal in length. —

* ValueError if dt is not specified or <= 0 when inserting —

* data for the first time. —

add_nonuniform_vlen (source_ds, data_object, fixed=False)
Add nonuniform data when data from all sources in a population is stored in a 2D ragged array.

When adding the data, the uid of the sources and the names for the corresponding datasets must be specified
and this function will create the dataset /data/nonuniform/{population}/{name} where {name} is the first
argument, preferably the name of the field being recorded.

This function can be used when different sources in a population are sampled at different time points for
a field value. Such case may arise when each member of the population is simulated using a variable
timestep method like CVODE and this timestep is not global.

Parameters

5.1.

nsdfwriter Module 19

nsdf Documentation, Release 0.1

* source_ds (HDF5 dataset) — the dataset under /map/nonuniform created for this popula-
tion of sources (created by add_nonunifrom_ds).

* data_object (nsdf.NonuniformData) — NSDFData object storing the data for all sources in
source_ds.

* fixed (bool) — if True, this is a one-time write and the data cannot grow. Default: False
Returns tuple containing HDF5 Datasets for the data and sampling times.
TODO: Concatenating old data with new data and reassigning is a poor choice. waiting for response from

h5py mailing list about appending data to rows of vlen datasets. If that is not possible, vlen dataset is
a technically poor choice.

h5py does not support vlen datasets with float64 elements. Change dtype to np.float64 once that is
developed.
add_static_data (source_ds, data_object, fixed=True)
Append static data variable values from sources to data.
Parameters source_ds (HDF5 Dataset) —

the dataset storing the source ids under map. This is attached to the stored data as a di-
mension scale called source on the row dimension.

data_object (nsdf.EventData): NSDFData object storing the data for all sources in
source_ds.

fixed (bool): if True, the data cannot grow. Default: True

Returns HDFS5 dataset storing the data

Raises
* KeyError if the sources in ‘source_data_dict‘ do not match —
* those in ‘source_ds‘. —

add_static_ds (popname, idlist)
Add the sources listed in idlist under /map/static.

Parameters

* popname (str) — name with which the datasource list should be stored. This will represent
a population of data sources.

* idlist (list of str) — list of unique identifiers of the data sources.

Returns An HDFS5 Dataset storing the source ids. This is converted into a dimension scale when
actual data is added.

add_uniform_data (source_ds, data_object, tstart=0.0, fixed=False)
Append uniformly sampled variable values from sources to data.

Parameters

* source_ds (HDF5 Dataset) — the dataset storing the source ids under map. This is attached
to the stored data as a dimension scale called source on the row dimension.

» data_object (nsdf. UniformData) — Uniform dataset to be added to file.
* tstart (double) — (optional) start time of this dataset recording. Defaults to 0.
« fixed (bool) — if True, the data cannot grow. Default: False

Returns HDFS5 dataset storing the data

20 Chapter 5. NSDF file writer

nsdf Documentation, Release 0.1

Raises
* KeyError if the sources in ‘source_data_dict* do not match —
* those in ‘source_ds‘. —
¢ ValueError if dt is not specified or <= 0 when inserting —
* data for the first time. —

add_uniform ds (name, idlist)
Add the sources listed in idlist under /map/uniform.

Parameters

* name (str) — name with which the datasource list should be stored. This will represent a
population of data sources.

« idlist (list of str) — list of unique identifiers of the data sources.

Returns An HDFS5 Dataset storing the source ids. This is converted into a dimension scale when
actual data is added.

contributor
List of contributors to the content of this file.

description
Description of the file. A text string.

license
License information about the file. This is text string.

method
(numerical) methods applied in generating the data.

rights
The rights of the file contents.

set_properties (properties)
Set the file attributes (environments).

Parameters properties (dict) — mapping property names to values. It must contain the following
keyes:

title (str) creator (list of str) software (list of str) method (list of str) description (str) rights
(str) tstart (datetime.datetime) tend (datetime.datetime) contributor (list of str)

Raises KeyError if not all environment properties are specified in the dict. —

software
Software (one or more) used to generate the data in the file.

tend
End time of the simulation/recording.

title
Title of the file

tstart
Start time of the simulation / data recording. A string representation of the timestamp in ISO format

nsdf.nsdfwriter.add_model_component (component, parentgroup)
Add a model component as a group under parentgroup.

5.1. nsdfwriter Module

21

nsdf Documentation, Release 0.1

This creates a group component.name under parent group if not already present. The uid of the component is
stored in the uid attribute of the group. Key-value pairs in the component.attrs dict are stored as attributes of the

group.

Parameters

» component (ModelComponent) — model component object to be written to NSDF file.

* parentgroup (HDF Group) — group under which this component’s group should be created.
Returns HDF Group created for this model component.
Raises

* KeyError if the parentgroup is None and no group —

* corresponding to the component’s parent exists. —

nsdf.nsdfwriter.match_datasets (hdfds, pydata)
Match entries in hdfds with those in pydata. Returns true if the two sets are equal. False otherwise.

nsdf.nsdfwriter.write_ascii_file (group, name, fname, **compression_opts)
Add a dataset name under group and store the contents of text file fname in it.

nsdf.nsdfwriter.write_binary_ file (group, name, fname, **compression_opts)
Add a dataset name under group and store the contents of binary file fname in it.

nsdf.nsdfwriter.write_dir_ contents (root_group, root_dir, ascii, **compression_opts)
Walk the directory tree rooted at root_dir and replicate it under root_group in HDFS file.

This is a helper function for copying model directory structure and file contents into an hdf5 file. If ascii=True
all files are considered ascii text else all files are taken as binary blob.

Parameters
* root_group (h5py.Group) — group under which the directory tree is to be created.
* root_dir (str) — path of the directory from which to start traversal.

« ascii (bool) — whether to treat each file as ascii text file.

22 Chapter 5. NSDF file writer

CHAPTER 6

NSDF file reader

6.1 nsdfreader Module

Reader for NSDF format

class nsdf .nsdfreader .NSDFReader (filename)
Bases: object

Reader for NSDF files.
This class encapsulates an NSDF file and provides utility functions to read the data in an organized manner.

contributor
List of contributors to the content of this file.

description
Description of the file. A text string.

event_populations
Names of the populations for which event variables have been recorded.

get_event_data (population, variable)
Get event variable recorded from population.

In NSDF a variable is recorded from a population of sources and data is organized as population/variable.
This function retrieve this dataset and creates EventData object containing (source, data) pairs.

Parameters
* population (str) — name of the population from which this data was recorded.
* variable (str) — name of the variable this data represents.
Returns: nsdf.EventData
Note: Data is converted to float64 for VLEN dialect.

get_event_vars (population)
Returns the names of event variables recorded for population.

Parameters population (sfr) — name of the population.
Returns list of str: names of the groups storing event variables.

get_nonuniform data (population, variable)
Get nonuniform data variable under population.

23

nsdf Documentation, Release 0.1

In NSDF a variable is recorded from a population of sources and data is organized as population/variable.
This function retrieve this dataset and creates NonuniformData object containing (source, data) pairs.
In case all the sources share the same sampling times, it is the NonuniformRegularData, a subclass of
NonuniformData and contains the sampling times as a separate array. Otherwise, data is tuple of variable
values and sampling times.

Parameters
* population (str) — name of the population from which this data was recorded.
* variable (str) — name of the variable this data represents.

Returns nsdf.NonuniformRegularData if dialect of the file is NUREGULAR.
nsdf.NonuniformData otherwise.

Note: Data is converted to float64 for VLEN dialect.

get_nonuniform_vars (population)
Returns the names of nonuniform variables recorded for population.

Parameters population (str) — name of the population.
Returns list of str: names of the groups storing nonuniform variables.

get_uniform data (population, variable)
Returns a UniformData object contents for recorded variable from population.

Parameters
¢ population (str) — name of the population.
e variable (str) — name of the variable.
Returns
dataobject — data container filled with
source, data, dt and units.
Return type nsdf.UniformData

get_uniform dataset (population, varname)
Returns the data sources and data contents for recorded variable varname from population.

Parameters
* population (str) — name of the population.
¢ varname (str) — name of the variable.

Returns (sources, data): sources is an dataset containing the source identifiers and data is a 2D
dataset whose i-th row is the data from the i-th entry in sources.

get_uniform dt (population, varname)
Returns sampling interval and time-unit for the uniform dataset varname recorded from population.

Parameters
 population (str) — name of the population of sources.
¢ varname (str) — name of the recorded variable.

Returns (dt, unit) : dr is the sampling interval for this dataset and unit is a string representing
the unit of time.

get_uniform_row (srcid, field)
Get the data for field variable recorded from source with unique id srcid.

24 Chapter 6. NSDF file reader

nsdf Documentation, Release 0.1

Parameters

* srcid (str) — unique id of the source.

e varname (str) — name of the variable.
Returns (data, unit, times, timeunit)

get_uniform_ts (population, varname)
Returns an array of sampling times and time-unit for the uniform dataset varname recorded from popula-
tion.

Parameters
* population (str) — name of the population of sources.
e varname (str) — name of the recorded variable.

Returns (times, unit) : times is an array of doubles containing the sampling time for each column
of the dataset and unit is a string representing the unit of time.

get_uniform vars (population)
Returns the names of uniform variables recorded for population.

Parameters population (str) — name of the population.
Returns list of str: names of the datasets storing uniform variables.

license
License information about the file. This is text string.

method
(numerical) methods applied in generating the data.

nonuniform populations
Names of the populations for which variables have been recorded with nonuniform sampling.

rights
The rights of the file contents.

software
Software (one or more) used to generate the data in the file.

tend
End time of the simulation/recording.

title
Title of the file

tstart
Start time of the simulation / data recording. A string representation of the timestamp in ISO format

uniform_ populations
Names of the populations for which variables have been recorded with uniform sampling.

6.1.

nsdfreader Module 25

nsdf Documentation, Release 0.1

26

Chapter 6. NSDF file reader

CHAPTER 7

Utilities

7.1 util Module

Utility functions for nsdf.

nsdf.util.find (a, predicate, chunk_size=1024)
Find the indices of array elements that match the predicate.

Parameters
* a (array_like) — Input data, must be 1D.

* predicate (function) — A function which operates on sections of the given array, returning
element-wise True or False for each data value.

* chunk_size (integer) — The length of the chunks to use when searching for matching indices.
For high probability predicates, a smaller number will make this function quicker, similarly
choose a larger number for low probabilities.

Returns index_generator — A generator of (indices, data value) tuples which make the predicate
True.

Return type generator
See also:

where (), nonzero ()

Notes

This function is best used for finding the first, or first few, data values which match the predicate.

Examples

>>> a = np.sin(np.linspace (0, np.pi, 200))
>>> result = find(a, lambda arr: arr > 0.9)
>>> next (result)

((71,), 0.900479032457)

>>> np.where(a > 0.9) [0][0]

71

Author:

27

nsdf Documentation, Release 0.1

Phil Elson (https://github.com/pelson). Code taken from numpy issue tracker:
https://github.com/numpy/numpy/issues/2269# on Wed Jul 30 11:20:23 IST 2014

nsdf.util.node_finder (container_list, match_fn)
Return a function that can be passed to hSpy.Group.visititem to collect all nodes satisfying match_fn collect in
container_list

nsdf.util.printtree (root, vchar="1", hchar="__", vcount=1, depth=0, prefix="", is_last=False)
Pretty-print an HDFS tree.

Parameters
* root (h5py.Group) — path of the root element of the HDF5 subtree to be printed.

* vchar (str) — the character printed to indicate vertical continuation of a parent child rela-
tionship.

* hchar (str) — the character printed just before the node name.

* vcount (int) — determines how many lines will be printed between two successive nodes.
* depth (int) — for internal use - should not be explicitly passed.

o prefix (str) — for internal use - should not be explicitly passed.

* is_last (bool) — for internal use - should not be explicitly passed.

28 Chapter 7. Utilities

https://github.com/pelson
https://github.com/numpy/numpy/issues

CHAPTER 8

Indices and tables

* genindex
* modindex

e search

29

nsdf Documentation, Release 0.1

30

Chapter 8. Indices and tables

Python Module Index

nsdf
nsdf

nsdf

nsdf

. init_ ,3

.constants, 7
nsdf.
.nsdfdata, 9
nsdf.
.nsdfwriter, 15
nsdf.

model, 13
nsdfreader, 23

util, 27

31

nsdf Documentation, Release 0.1

32

Python Module Index

Index

A

add_child() (nsdf.model.ModelComponent method), 13
add_children() (nsdf.model.ModelComponent method),

13

add_event_1d() (nsdf.nsdfwriter. NSDFWriter method),
16

add_event_ds() (nsdf.nsdfwriter NSDFWriter method),
16

add_event_ds_1d() (nsdf.nsdfwriter NSDFWriter
method), 16

add_event_nan() (nsdf.nsdfwriter NSDFWriter method),
16

add_event_vlen() (nsdf.nsdfwriter NSDFWriter method),
17

add_model_component() (in module nsdf.nsdfwriter), 21
add_model_filecontents() (nsdf.nsdfwriter NSDFWriter

method), 17

add_modeltree() (nsdf.nsdfwrite. NSDFWriter method),
17

add_nonuniform_1d() (nsdf.nsdfwriter. NSDFWriter
method), 17

add_nonuniform_ds() (nsdf.nsdfwriter. NSDFWriter
method), 18

add_nonuniform_ds_1d() (nsdf.nsdfwriter. NSDFWriter
method), 18

add_nonuniform_nan() (nsdf.nsdfwriter NSDFWriter
method), 19

add_nonuniform_regular() (nsdf.nsdfwriter NSDFWriter
method), 19

add_nonuniform_vlen() (nsdf.nsdfwriter NSDFWriter
method), 19

add_static_data() (nsdf.nsdfwriter NSDFWriter method),
20

add_static_ds() (nsdf.nsdfwriter. NSDFWriter method),
20

add_uniform_data() (nsdf.nsdfwriter. NSDFWriter
method), 20

add_uniform_ds() (nsdf.nsdfwriter NSDFWriter method),
21

attrs (nsdf.model.ModelComponent attribute), 13

C

check_uid() (nsdf.model.ModelComponent method), 13
children (nsdf.model.ModelComponent attribute), 13
common_prefix() (in module nsdf.model), 14
contributor (nsdf.nsdfreader. NSDFReader attribute), 23
contributor (nsdf.nsdfwriter. NSDFWriter attribute), 21

D

data (nsdf.nsdfwriter NSDFWeriter attribute), 15
description (nsdf.nsdfreader. NSDFReader attribute), 23
description (nsdf.nsdfwriter NSDFWriter attribute), 21
dialect (class in nsdf.constants), 7

dialect (nsdf.nsdfwriter. NSDFWriter attribute), 15

dt (nsdf.nsdfdata.UniformData attribute), 11

dtype (nsdf.nsdfdata.NSDFData attribute), 9

E

event_populations
tribute), 23
EventData (class in nsdf.nsdfdata), 9

F

field (nsdf.nsdfdata.NSDFData attribute), 9
find() (in module nsdf.util), 27

G

get_all_data() (nsdf.nsdfdata.NSDFData method), 9
get_data() (nsdf.nsdfdata.NSDFData method), 9
get_event_data() (nsdf.nsdfreader. NSDFReader method),

(nsdf.nsdfreader. NSDFReader at-

23

get_event_vars() (nsdf.nsdfreader NSDFReader method),
23

get_id_path_dict() (nsdf.model.ModelComponent
method), 14

get_node() (nsdf.model.ModelComponent method), 14

get_nonuniform_data() (nsdf.nsdfreader. NSDFReader
method), 23

get_nonuniform_vars()
method), 24

(nsdf.nsdfreader. NSDFReader

33

nsdf Documentation, Release 0.1

get_source_data_dict() (nsdf.nsdfdata. NSDFData
method), 9
get_sources() (nsdf.nsdfdata.NSDFData method), 9

get_times() (nsdf.nsdfdata.NonuniformRegularData

method), 10

get_uniform_data() (nsdf.nsdfreader. NSDFReader
method), 24

get_uniform_dataset() (nsdf.nsdfreader. NSDFReader
method), 24

get_uniform_dt() (nsdf.nsdfreader NSDFReader method),
24

get_uniform_row() (nsdf.nsdfreader. NSDFReader
method), 24

get_uniform_ts() (nsdf.nsdfreader. NSDFReader method),
25

get_uniform_vars() (nsdf.nsdfreader. NSDFReader
method), 25

H

hdfgroup (nsdf.model.ModelComponent attribute), 13

L

license (nsdf.nsdfreader. NSDFReader attribute), 25
license (nsdf.nsdfwriter. NSDFWriter attribute), 21

M

mapping (nsdf.nsdfwriter. NSDFWriter attribute), 15
match_datasets() (in module nsdf.nsdfwriter), 22
method (nsdf.nsdfreader. NSDFReader attribute), 25
method (nsdf.nsdfwriter. NSDFWriter attribute), 21
mode (nsdf.nsdfwriter. NSDFWriter attribute), 15
model (nsdf.nsdfwriter NSDFWriter attribute), 15
ModelComponent (class in nsdf.model), 13
modeltree (nsdf.nsdfwriter. NSDFWriter attribute), 15

N

name (nsdf.nsdfdata. NSDFData attribute), 9

node_finder() (in module nsdf.util), 28

nonuniform_populations (nsdf.nsdfreader NSDFReader
attribute), 25

NonuniformData (class in nsdf.nsdfdata), 10

NonuniformRegularData (class in nsdf.nsdfdata), 10

nsdf.__init__ (module), 3

nsdf.constants (module), 7

nsdf.model (module), 13

nsdf.nsdfdata (module), 9

nsdf.nsdfreader (module), 23

nsdf.nsdfwriter (module), 15

nsdf.util (module), 27

NSDFData (class in nsdf.nsdfdata), 9

NSDFReader (class in nsdf.nsdfreader), 23

NSDFWriter (class in nsdf.nsdfwriter), 15

P

parent (nsdf.model.ModelComponent attribute), 13

path (nsdf.model.ModelComponent attribute), 14

print_tree() (nsdf.model.ModelComponent method), 14

printtree() (in module nsdf.util), 28

put_data() (nsdf.nsdfdata.NonuniformData method), 10

put_data() (nsdf.nsdfdata.NonuniformRegularData
method), 10

put_data() (nsdf.nsdfdata.NSDFData method), 9

R

rights (nsdf.nsdfreader. NSDFReader attribute), 25
rights (nsdf.nsdfwriter. NSDFWriter attribute), 21

S

set_dt() (nsdf.nsdfdata.UniformData method), 11

set_properties() (nsdf.nsdfwriter NSDFWriter method),
21

set_times() (nsdf.nsdfdata.NonuniformRegularData
method), 11

software (nsdf.nsdfreader. NSDFReader attribute), 25

software (nsdf.nsdfwriter. NSDFWriter attribute), 21

StaticData (class in nsdf.nsdfdata), 11

T

tend (nsdf.nsdfreader. NSDFReader attribute), 25
tend (nsdf.nsdfwriter. NSDFWriter attribute), 21
time_dim (nsdf.nsdfwrite. NSDFWriter attribute), 15
title (nsdf.nsdfreader. NSDFReader attribute), 25

title (nsdf.nsdfwriter NSDFWriter attribute), 21

tstart (nsdf.nsdfreader. NSDFReader attribute), 25
tstart (nsdf.nsdfwriter. NSDFWriter attribute), 21
ttype (nsdf.nsdfdata.NonuniformData attribute), 10
tunit (nsdf.nsdfdata.UniformData attribute), 11

U

uniform_populations (nsdf.nsdfreader NSDFReader at-
tribute), 25

UniformData (class in nsdf.nsdfdata), 11

unit (nsdf.nsdfdata. NSDFData attribute), 9

update_id_path_dict() (nsdf.model.ModelComponent
method), 14

update_source_data_dict()
method), 10

(nsdf.nsdfdata. NSDFData

V

visit() (nsdf.model.ModelComponent method), 14

W

write_ascii_file() (in module nsdf.nsdfwriter), 22
write_binary_file() (in module nsdf.nsdfwriter), 22
write_dir_contents() (in module nsdf.nsdfwriter), 22

34

Index

	NSDF Package
	nsdf Package

	Constants
	constants Module

	Data containers
	nsdfdata Module

	Data structure for model hierarchy
	model Module

	NSDF file writer
	nsdfwriter Module

	NSDF file reader
	nsdfreader Module

	Utilities
	util Module

	Indices and tables
	Python Module Index

